Acta Cryst. (1966). 21, 1011

The crystal structure of the compound Cs₂CeCl₆. By T. KAATZ and M. MARCOVICH, Israel Atomic Energy Commission

(Received 23 August 1965 and in revised form 3 August 1966)

The compound Cs_2CeCl_6 was recently prepared by the authors (Marcovich & Kaatz, 1966) as a finely divided yellow powder.

Diffraction patterns were obtained with a Philips X-ray powder diffractometer with filtered Cu K α radiation, $\lambda =$ 1.5418 Å. Unit-cell dimensions were determined by an extrapolation procedure which eliminated errors due to specimen displacement, as described by Wilson (1950). A hexagonal cell with the following dimensions was obtained: $a=7.476\pm0.002$, $c=6.039\pm0.002$ Å, c/a=0.808. Considering known interionic distances, it appeared that this cell could contain only *one* Cs₂CeCl₆ molecule, giving a calculated density of 3.52 g.cm⁻³.

On the basis of the well-known structural similarity of the lanthanides and the actinides, the structure was assumed to be the same as that of Cs_2PuCl_6 (Zachariasen, 1948), Cs_2ThCl_6 and Cs_2UCl_6 (Siegel, 1948), with the space group P3m and the following atomic positions:

1 Ce in (a), (0,0,0)

2 Cs in $(d) \pm (\frac{1}{3}, \frac{2}{3}, u)$

6 Cl in (1) $\pm (x, \bar{x}, z)$ etc.

The structure is of the K_2GeF_6 type, as established by Hoard & Vincent (1939) from single-crystal studies.

The parameters of Zachariasen (1948) were used as the starting point in a least-squares treatment, in which three positional parameters, an overall isotropic thermal parameter, and a scale factor were refined. The function minimized was $\Sigma w(F_o^2 - F_c^2)$, where F_o^2 and F_c^2 represent the observed and calculated values of the quantity $\bar{F}_{khl}^2 + F_{hk\bar{l}}^2$. The weights are based on counting statistics as described by Evans (1961), giving zero weight to unobserved reflections. F values were obtained by correcting the observed intensities with the Lorentz-polarization factor, and making allowance for multiplicity. The absorption factor was assumed constant for the flat powder sample used. Atomic scattering factors for Cl⁻ were taken from Dawson (1960). and those for Cs⁺ and Ce⁴⁺ from Thomas & Umeda (1957). Corrections for anomalous dispersion were made with the values given by Cromer (1965). The final parameters obtained were: $x = 0.171 \pm 0.003$, $z = 0.259 \pm 0.009$, u = 0.255 ± 0.005 ; B = 2.3 Å². Final values of the observed and calculated structure factors are given in Table 1. The conventional R index, omitting unobserved F values, is 8.5%.

In this structure each cerium atom is bonded to six chlorine atoms at the interatomic distance Ce-Cl=2.71 Å. Each cesium atom is bonded to twelve chlorine atoms, three of them at a distance 3.61 Å, three at 3.75 Å and six at 3.74 Å, giving a weighted average of 3.71 Å.

for the powder lines of Cs ₂ CeCl ₆		
hkl	$(F_{hkl}^2 + F_{hk\bar{l}}^2)^{\frac{1}{2}}$ obs	$(F_{hkl}^2 + F_{hk\bar{l}^2})_{calc}^{\frac{1}{2}}$
100	8	7
001	19	21
101	50	52
110	61	56
200	23	19
111	13	22
002	61	60
201	101	103
102	52	53
210	_	8
112		8
211	44	46
202	73	76
300	52	47
301	18	26
003	22	27
103	31	39
212	41	41
220	83	78
310	_	4
221		15
113	15	19
302	—	10
311	38	37

The interatomic distances obtained from the sum of the ionic radii and by employing the appropriate coordination number correction (Seabord & Katz, 1954) are $Ce^{4+}-6Cl^{-} = 2.73$ Å and $Cs^{+}-12Cl^{-}=3.67$ Å, in fair agreement with the above values.

The authors wish to thank Prof. E.D.Bergmann and Dr B. Gina for their interest in this study.

References

CROMER, D. T. (1965). Acta Cryst. 18, 17.

- DAWSON, B. (1960). Acta Cryst. 13, 403.
- Evans, H. T. (1961). Acta Cryst. 14, 689.
- HOARD, J. L. & VINCENT, W. B. (1939). J. Amer. Chem. Soc. 61, 2849–2852.
- MARCOVITCH, M. & KAATZ, T. (1966). The Preparation and Properties of Dicesium Hexachlorocerate. To be published.
- SEABORG, G. T. & KATZ, T. T. (1954). The Actinide Elements. Ch. 18, p. 769. New York: McGraw-Hill.
- SIEGEL, S. (1956). Acta Cryst. 9, 827.
- THOMAS, L. H. & UMEDA, K. (1957). J. Chem. Phys. 26, 293.
- WILSON, A. J. C. (1950). J. Sci. Instrum. 27, 321.
- ZACHARIASEN, W. H. (1948). Acta Cryst. 1, 268.

Table 1. Observed and calculated structure factors for the powder lines of Cs2CeCle